A Toolkit for Efficient Learning of Lexical Units for Speech Recognition

نویسندگان

  • Matti Varjokallio
  • Mikko Kurimo
چکیده

String segmentation is an important and recurring problem in natural language processing and other domains. For morphologically rich languages, the amount of different word forms caused by morphological processes like agglutination, compounding and inflection, may be huge and causes problems for traditional word-based language modeling approach. Segmenting text into better modelable units is thus an important part of the modeling task. This work presents methods and a toolkit for learning segmentation models from text. The methods may be applied to lexical unit selection for speech recognition and also other segmentation tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L2 Learners’ Lexical Inferencing: Perceptual Learning Style Preferences, Strategy Use, Density of Text, and Parts of Speech as Possible Predictors

This study was intended first to categorize the L2 learners in terms of their learning style preferences and second to investigate if their learning preferences are related to lexical inferencing. Moreover, strategies used for lexical inferencing and text related issues of text density and parts of speech were studied to determine their moderating effects and the best predictors of lexical infe...

متن کامل

The Role of Private Speech Produced by Intermediate EFL Learners in Lexical Language Related Episodes

Private speech utilization is accepted to have a critical role in the continuum of language acquisition. As a valuable device in studying learners’ talk during interaction, a language related episode (LRE) is any part of a dialogue where a student speaks about a language problem s/he comes across while completing a task. The present study investigated the role of private speech produced by Inte...

متن کامل

Off-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model

In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...

متن کامل

On-line learning of acoustic and lexical units for domain-independent ASR

We are interested in on-line acquisition of acoustic, lexical and semantic units from spontaneous speech. Traditional ASR techniques require the domain-speci c knowledge of acoustic, lexicon data and more importantly the word probability distributions. In this paper we propose an algorithm for unsupervised learning of acoustic and lexical units from out-of-domain speech data. The new lexical un...

متن کامل

Unsupervised Learning of Lexical Information for Language Processing Systems

Natural language processing systems such as speech recognition and machine translation conventionally treat words as their fundamental unit of processing. However, in many cases the definition of a “word” is not obvious, such as in languages without explicit white space delimiters, in agglutinative languages, or in streams of continuous speech. This thesis attempts to answer the question of whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014